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1 Convergence of discrete Markov chains

General de�nition Let G = (V,E) be a �nite graph with weights ce ≥ 0 for e ∈ E.
We can always assume the graph to be complete and put 0 weights on edges that didn't
exist. We will at �rst assume the graph is directed. The continuous time Markov chain
on G is a family of random variables (Xx

t )t∈R+,x∈V such that :

P(Xx
t = y) = exp(tL)(x, y)

Where L is the discrete Laplacian on G, also know as the generator of X. It is a linear
operator de�ned by :

Lf(x) =
∑
y∈V

cxy(f(y)− f(x))

Since Pt = etL satis�es the heat equation :

∂tPt = LPt

then Pt is often called the heat kernel of the Markov chain Xt and L is know as the
generator since it generates the semi-group (Pt)t≥0. On the other hand a semi-group of
stochastic operators that is di�erentiable will always be written as exp(tL) for a certain
discrete Laplacian L.

De�ne q(x) =
∑

y ̸=x cxy, q is the time spend at x. Markov chains are mostly studied
only looking at their law and forgetting the underlying stochastic process. But to get
an idea of what such a process is, Xx starts at the point x and stay there for a time
t ∼ E(q(x)), then jumps to a neighboring vertex with law cxy/q(x). Then if it jumps at y
it has the same law as Xy and the process is repeated.

Proposition 1.1. Xx
t is well de�ned, that is to say for any positive t ≥ 0 Pt is a

stochastic matrix. On the other hand any semi-group of stochastic matrix di�erentiable
at 0 will be written exp(tL) with L = ∂t(Pt)t=0 a generator.

Proof. Since L1 = 0 and L commutes with Pt, we have ∂t(Pt1) = 0, so Pt1 = 1. By
the semi-group propriety (Pt+s = PtPs) we only need to prove that close to 0 Pt has
positive entries.

Let f be a positive function and x be such that f(x) = 0, then :

∂tPtf(x)|t=0 = Lf(x) ≥ 0

so at the entries of that are zero f Ptf increases, so locally Ptf is positive, and by the
semi-group propriety for any positive time Ptf ≥ 0. In particular for f = δx, Pt has
positive entries.
On the other hand if Pt is a semi-group of di�erentiable operators since P0 = Id then
for x ̸= y Pt(x, y)

′ ≥ 0. Finally by di�erentiating the stochastic condition:

L(x, x) = −
∑
y ̸=x

L(x, y)
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In a more general setting a Markov chain is a family of linear operators on measurable
functions that satisfy the semi-group propriety as well as leaving constant function invari-
ant and being increasing. The de�nition given here can be transposed as is for discrete
spaces and letting L act on at least on �nitely supported functions.

Invariant law An invariant law π is a probability measure on V such that for any
function f : V → R:

Eπ[Lf ] = 0

By di�erentiating this is equivalent to :

∀t ≥ 0, Eπ[Ptf ] = Eπ[f ]

and by taking a basis this is also equivalent to πL = 0 or πPt = π. In terms of stochastic
process this means that picking a point following π and then following the process for any
positive time will have the same law as π.

As soon as X is irreducible, that is to say for any positive time P(Xx
t = y) > 0, then

Perron-Frobenius's theorem assure the existence an uniqueness of such a invariant law.

Theorem 1 (Perron-Frobenius). Let A be a positive irreducible matrix.
Then there exists a maximal eigenvalue r > 0 such that r is a simple eigenvalue and there
exits a positive eigenvector for the eigenvalue r. Furthermore any other eigenvalue s is
such that |s| ≤ r.

Proof. Let x be a positive non-zero vector, then Ax > 0. Indeed we know that Ax ≥ 0,
but if i is such that xi ̸= 0 then for k such that Ak

i,i ̸= 0 we have Akx ̸= 0, therefore
Ax ̸= 0.
We can now consider for x ≥ 0 f(x) = max{t > 0, tx ≤ Ax}, we know that f(x) > 0 for
x ≥ 0 non zero. Let :

r = sup
∥x∥≤1

x≥0,x ̸=0

f(x) = sup
∥x∥=1
x≥0

f(x)

f is upper semi-continuous therefore r is in fact a max. Indeed if x → x0 then we have :

f(x)x ≤ Ax =⇒ lim sup
x→x0

f(x)x0 ≤ Ax0

therefore lim supx→x0
f(x) ≤ f(x0).

If ∥x∥ = 1, x ≥ 0 is such that f(x) = r then Ax− rx ≥ 0, if we had Ax− rx ̸= 0 then
AAx > rAx thus f(Ax) > f(x) which is impossible, therefore x is a positive eigenvector
for the value r > 0.
Assuming xi ̸= 0 let kj be such that A

kj
ij > 0 then we have xj = 1/rkj(Akjx)j > 0, thus

x > 0.

Let y be an other eigenvector for the value r. Let t be the smallest such that (tx−y) ≥ 0,
in particular we have a least one coordinate i such that txi− yi = 0. Assuming tx− y ̸= 0
then tx−y/∥tx−y∥ meets the maximum of f that implies tx−y > 0 which is impossible,
therefore tx = y in other words Er(A) is of dimension 1.
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Let λ ̸= r be another eigenvalue and y an normalized eigenvector. By the triangular
inequality :

A|y| ≥ |Ay| = |λ||y|

therefore |λ| < r.

In the following we will assume X is irreducible and π is the unique invariant law and
strictly positive. A focal point in the study of Markov chains is the convergence of these
to their invariant measure.

Total variation distance The privileged method of estimating the convergence of the
chain is the total variation distance :

De�nition 1.1 (Total variation distance). The total variation distance of probability
measures on a measurable space (E,F) is de�ned as:

∥µ− ν∥TV = sup
A⊂F

|µ(A)− ν(A)|

In the discrete case we have a useful representation of this norm :

Proposition 1.2. If H is at most a countable set then:

∥µ− ν∥TV =
1

2
∥µ− ν∥1 =

1

2

∑
x∈H

|µ(x)− ν(x)|

Proof. Let A = {x, µ(x) ≥ ν(x)}, then :

|µ(A)− ν(A)| = µ(A)− ν(A) =
∑
x∈A

|µ(x)− ν(x)|

but we also have :

|µ(A)− ν(A)| = ν(Ac)− µ(Ac)| =
∑
x∈Ac

|µ(x)− ν(x)|

We now only need to prove that A meets the sup. Let B ⊂ H, then :

|µ(B)− ν(B)| ≤ |µ(B ∩ A)− ν(B ∩ A)| − |µ(B ∩ Ac)− ν(B ∩ Ac)|
= µ(B ∩ A)− ν(B ∩ A) + µ(B ∩ Ac)− ν(B ∩ Ac)

= µ(A)− ν(A) = |µ(A)− ν(A)|

This proves also that A is optimal.

This can be generalized to any measurable (σ-�nite) space.

Proposition 1.3. If ν ≪ µ, let h = ∂ν
∂µ

then :

∥µ− ν∥TV =
1

2
∥h− 1∥L1(µ)

An other representation of the total variation distance can be convenient :
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Proposition 1.4. For any two laws µ, ν we have :

∥µ− ν∥TV = inf
π∈Γ

X,Y∼π

P(X ̸= Y )

where Γ is the set of product laws that have projection coinciding with µ and ν. And an
explicit minimizing coupling exists.

The prove of both these propositions are quite involved and are detailed in the measure
theory annex. An important corollary is the Markov contraction of the L1 norm.

Corollary 1.1 (Markov contraction). If Pt is a Markov kernel then :

∥µPt − νPt∥TV ≤ ∥µ− ν∥TV

for any initial law µ, ν.

Proof. Let π be a coupling of µ, ν and X, Y ∼ π. Let Xx
t be a Markov chain resulting

from x ∈ V . We de�ne a coupling of µPt and νPt by taking:

Xt(ω) = Z
X(ω)
t (ω), Yt(ω) = Z

Y (ω)
t (ω)

Knowing Y , X ∼ µ therefore ZX
t ∼ µPt, the same can be said for Y , we have thus

de�ned a coupling of µPt and νPt. But noticing :

X(ω) = Y (ω) =⇒ Xt(ω) = Yt(ω)

we have :
∥µPt − νPt∥TV ≤ P(Xt ̸= Yt) ≤ P(X ̸= Y )

this is true for any coupling, proving the lemma.

1.1 Poincare constant

L2 structure of the invariant measure We can associate several objects to such a
generator that will be useful to study the convergence of X towards equilibrium. Notably
an euclidean structure on L2(π).

De�nition 1.2 (Dirichlet form). The Dirichlet form of L is :

E(f, g) = −⟨Lf, g⟩π = −Eπ[fLg]

If L is auto-adjointed in L2(π) then E(f, g) de�nes the privileged euclidean structure on
L2(π). In that case we say the Markov chain is reversible.

De�nition 1.3 (Carre du champ). The carre du champ operator of L is :

Γ(f, g) =
1

2
[L(fg)− fLg − gLf ]

By rearranging we can see that :

Γ(f, g)(x) =
1

2

∑
y ̸=x

cxy(f(y)− f(x))(g(y)− g(x))

In particular Γ(f, f) ≥ 0.
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Spectral gap Finally let L⋆ by the adjoint of L in L2(π), that is to say :

L⋆(x, y) =
π(y)L(y, x)

π(x)

The Poincarre constant of L or spectral gap, is λ the lowest non-zero eigenvalue of −L∗ =
−(L⋆ + L)/2. Since this operator is auto-adjoint in L2(π) then this operator as real
eigenvalues. Since L∗ is auto adjoint:

E(f, f) = −⟨f, Lf⟩π − ⟨f, L∗f⟩π = Eπ[Γ
∗(f, f)] ≥ 0

Where Γ∗ is the carre du champ of the symmetrized generator. So by de�nition of λ :

E(f, f) ≥ λVarπ[f ]

By the minmax principle this is the best constant for such an inequality. This constant
gives a great number of information on the structure of the underlying graph and also
quanti�es the convergence of the Markov chain. Indeed we have:

∥Pt(x, .)− π∥TV =
1

2
∥h− 1∥1,π

where h(y) = Pt(x,y)
π(y)

, by C.S :

∥h− 1∥1,π ≤ ∥h− 1∥2,π =
√
Varπ[h]

Proposition 1.5 (Poincare inequality). We have for any positive time:

∥Pt(x, .)− π∥TV ≤ 1

2
e−λt 1

π(x)

Proof. Since ∂tVarπ[h] = −2E(h, h) we have :

∂tVarπ[h] ≤ −2λVarπ[h]

so by Gronwall's lemma :

Varπ[h] ≤ e−2λtVarπ[δx/π] = e−2λt
(
1/π(x)2 − 1

)

This can be easily generalized to any starting law µ and with the bound Varπ(∂µ/∂π) ≤
∥µ/π∥2∞ we have :

∥µPt − π∥TV ≤ 1

2
e−λt

∥∥∥µ
π

∥∥∥
∞

Finally we denote trell = 1/λ the relaxation time.
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1.2 Modi�ed logarithmic Sobolev constant

If λ quanti�es the decay of the L2 norm, ρ the modi�ed logarithmic Sobolev constant
quanti�es the decay of entropy. More precisely the decay of relative entropy of Kullback
Leibler divergence :

De�nition 1.4 (Kullback Leibler divergence). Let ν ≪ µ be two measures then:

dKL(ν∥µ) = Eν

[
log

∂ν

∂µ

]
= Eµ

[
∂ν

∂µ
log

∂ν

∂µ

]
The mutual entropy has several interesting proprieties notably it is positive and 0 if

an only if µ = ν. Unfortunately it is not symmetric. The Pinsker's inequality relates the
entropy to the L1 norm :

Proposition 1.6 (Pinsker's inequality). Let ν ≪ µ be two measures then:

∥ν − µ∥2TV ≤ 1

2
dKL(ν∥µ)

So the decay of entropy controls the convergence of the chain. Just as ∂tVarπPt = −2E
a useful di�erential relation holds for entropy :

∂tdKL(Pt(x, .)∥π) = E(h, log h)

The modi�ed logarithmic Sobolev constant is the best constant such that the exponential
decay of entropy holds, be take in�nitesimally we can de�ne it as the biggest constant
such that for any law ν = fdπ we have :

E(f, log f) ≥ ρdKL(ν∥π)

Since both dKL and E are homogeneous (if L is auto-adjoint), this relation can prolonged
to any positive function in that case dKL becomes :

Entπ[f ] = Eπ

[
f log

f

Eπ[f ]

]
= Eπ[f log f ]− Eπ[f ] logEπ[f ] (1)

The convexity of x log x guaranties that Entπ[f ] ≥ 0 and Entπ[f ] = 0 if and only if
f = Eπ[f ], i.e. f is constant. By construction we have exponential decay of entropy at
rate ρ :

Proposition 1.7 (Modi�ed logarithmic Sobolev inequality). We have for any positive
time :

dKL(Pt(x, .)∥π) ≤ e−tρ log
1

π(x)

Like in the Poincare inequality this can be generalized to any initial law µ :

dKL(µPt∥π) ≤ e−tρdKL(µ∥π)

The Poincare constant can be de�ned as an eigenvalue of an operator so the usual tools
of linear algebra can be used however no such representation is know for ρ which, among
other reasons, makes it notoriously hard to study or even estimate. Also we can't sym-
metrize the operator since E(f, log f) ̸= E∗(f, log f) in general.
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1.3 Mixing times and the cuto� phenomenon

Mixing times have a self explanatory de�nition :

De�nition 1.5 (Mixing time). For 1 > ε > 0 the mixing time tmix of a Markov chain
with heat kernel Pt is :

tmix(ε) = inf

{
t|max

x∈V
∥Pt(x, .)− π∥TV ≤ ε

}
Cuto� phenomenon An interesting problem is to precisely estimate these mixing times
and speci�cally their dependence on the size underlying graph. The 'cuto� phenomenon'
is the observation that tmix(ε) does not depend on ε as the size of the graph goes to
in�nity, this phenomenon has been cataloged in multiple example. It can be precisely
de�ned as :

De�nition 1.6. The sequence of Markov chains Xn with state space of size diverging,
exhibits a cuto� if for any �xed ε we have :

tn
mix

(ε) ∼
n→∞

tn
mix

(1− ε)

Remark. Often the dependence in n of the mixing times will be omitted, and we will for
example write tmix(ε) ∼ tmix(1− ε).Often the dependence in n of the mixing times will be
omitted, and we will for example write tmix(ε) ∼ tmix(1− ε).

Example. A prototypical example are product chain. If G is a graph with a Markov chain
X the product chain on Gn is a chain where each component is independently updated
one at the time. If trell is the relation time of the original graph G then the product chain
Xn have mixing time :

tmix ∼
trell
2

n log n

for any ε.

Question This cuto� phenomenon has mostly been studied on chain using a great
knowledge of the behavior the chain but very general criteria to characterize cuto� are
unknown.
Recent works however seem to point out the crucial role of entropy in this phenomenon.
A generic cuto� condition has been established under curvature condition in Salez [Sal21].

2 Entropy concentration

2.1 Entropy concentration implies cuto�

We will establish several very general bound on mixing times using the entropies at time
t:

De�nition 2.1. (Maximal entropy) The maximal entropy of a Markov chain is de�ned
as :

d⋆(t) = max
x∈V

dKL(Pt(x, .)∥π) (2)
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Lemma 1 (Entropic upper-bound). For any t ≥ 0 and ε ∈]0, 1[ we have :

tmix(ε) ≤ t+
trell
ε

(1 + d⋆(t))

Proof. Take any law µ on V and consider the set :

A = {x ∈ V, lnµ(x)/π(x) < 1 + 2dKL(µ∥π)/ε}

The set of point that don't deviate from the mean of lnµ/π, dKL(µ∥π), we expect A to
have a large measure, indeed by de�nition :(

1 +
2dKL(µ∥π)

ε

)
µ(Ac) ≤ Eµ[lnµ/π1Ac ]

≤ dKL(µ∥π)− Eµ[(µ/π − 1)1A]

= dKL(µ∥π) + π(A)− µ(A)

= dKL(µ∥π) + µ(Ac) + π(A)− 1

≤ dKL(µ∥π) + µ(Ac)

where we used lnx ≤ x − 1. After rearranging we have µ(Ac) ≤ ε/2, in particular A is
non empty.

Now consider µ̂ = µ|A = 1Aµ/µ(A), then :∥∥∥∥ µ̂π
∥∥∥∥
∞

=
1

µ(A)
max
x∈A

µ(x)

π(x)
≤ e

1− ε/2
exp(2dKL(µ∥π)/ε) ≤ e2 exp(2dKL(µ∥π)/ε)

So by Proposition 1.5, we have :

∥µ̂Pt − π∥ ≤ 1

2
exp(1 + dKL(µ∥π)/ε− t/trell)

Using e1−1/x ≤ x for positive x, we have for t0 = trell/ε(1+dKL(µ∥π)), ∥µ̂Pt0 −π∥ ≤ ε/2.
Then using the following lemma we have ∥µ̂Pt0 −µPt0∥TV ≤ ∥µ̂−µ∥TV = µ(Ac) ≤ ε/2.
Therefore :

∥µPt0 − π∥TV ≤ ε

We can then conclude using µ = δxPt

With this lemma and exponential decay of entropy we can already establish a general
criteria for cuto� :

Theorem 2. (Modi�ed logarithmic Sobolev condition for cuto�) Let Xn be a sequence
of irreducible reversible Markov chains with modi�ed logarithmic Sobolev constant ρ. We
have :

tmix(ε)− tmix(1− ε) ≤ trell
ε

(1 + e−ρtmix(1−ε) log 1/π⋆)

Where π⋆ = minx∈V π(x). In particular if :

tmix(1− ε) ≥ 1

ρ
log log

1

π⋆
+ o

(
1/ρ log log

1

π⋆

)
Then we have cuto�.
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The issue with this condition is that as previously said an estimation of ρ is very di�-
cult, furthermore as demonstrated in the product case the cuto� happens often precisely
at the threshold tmix = 1/2λ log log 1/π∗ (Where π∗ in the product case is π∗,n = (π∗)n.
So log log π∗ = log n+O(1).)
The following proposition shows that this condition is not really useful to prove cuto� in
without a precise knowledge of ρ.

Proposition 2.1. ρ ≤ 2λ.

Proof. The Poincare inequality is in reality a linearization of the modi�ed logarithmic
Sobolov inequality. Let f = 1 + εg, with g of mean 0 and ε small enough such that f is
positive, then :

Entπ[f ] = Eπ[f log f ] =
ε2

2
Eπ[g

2] + o(ε2)

and since πL = 0 :

E(f, log f) = −εEπ[Lg log f ] = −ε2Eπ[gLg] + o(ε2)

By taking ε → 0 and since E(f, f) is invariant by translation (because Γ is), we have for
any g:

E(g, g) ≥ ρ

2
Varπ[g]

Varentropy One re�nement would be to not look at the entire decay of entropy until
time tmix(1 − ε) but only look at the concentration of entropy that will be quanti�ed
using varentropy introduced in a somewhat di�erent context for log-concave measures
(see [FLM20]).

De�nition 2.2 (Varentropy). If ν ≪ µ are two measures then their varentropy is:

VKL(ν∥µ) = Varν

[
log

∂ν

∂µ

]
in the same way the maximal varentropy for a Markov chain is de�ned as :

V ⋆(t) = max
x∈V

VKL(Pt(x, .)∥π)

Modifying the Chebychev inequality and using a total variation bound we can upper
bound the mutual entropy using varentropy.

Lemma 2. For any two probability measures µ ≪ ν we have :

dKL(µ∥ν) ≤
1 +

√
VKL(µ∥ν)

1− ∥µ− ν∥TV

Proof. Take ε = 1−∥µ− ν∥TV > 0 since ν ≪ µ. Let θ = dKL(µ∥ν)−
√

VKL(µ∥ν)/ε and
let h = ∂µ

∂ν
and :

A = {x| lnh(x) ≥ θ}
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by Chebychev's inequality we have :

µ(A) =

∫
A

dµ(x)

≥ 1−
∫
Ac

(h(x)− Eµ[h])
2

(θ − Eµ[h])2
dµ(x)

≥ 1− ε2

because VKL(µ∥ν) = Eµ[lnh]. Then by de�nition of A :

µ(A) =

∫
A

h(x)dν(x) ≥ eθ
∫
A

dν(x) = eθν(A)

With these two inequalities we have :

1− ε = |µ− ν∥TV ≥ µ(A)− ν(A)

≥ (1− e−θ)µ(A)

≥ (1− e−θ)(1− ε2)

By rearranging we get :

1− ε ≥ (1− e−θ)(1− ε2)

⇐⇒ e−θ ≥ 1− 1

1 + ε

⇐⇒ − ln
ε

1 + ε
= ln(1 + 1/ε) ≥ θ

using again lnx ≤ x− 1 we have θ ≤ 1/ε which gives us the desired inequality.

Using these lemmas we can easily prove the following theorem :

Theorem 3 (Entropic concentration implies cuto�). For any Markov chain on a �nite
number of states and any ε ∈]0, 1[ we have :

tmix(ε)− tmix(1− ε) ≤ 2trell
ε2

(
1 +

√
V ⋆(tmix(1− ε))

)
Proof. We apply lemma 1 to t = tmix(1− ε). And by de�nition of tmix(1− ε) we have :

∀x ∈ V, ∥Ptmix(1−ε)(x, .)− π∥TV ≤ 1− ε

Then by lemma 2 we have for any x ∈ V :

d⋆(tmix(1− ε)) ≤
1 +

√
V ⋆(tmix(1− ε))

1−maxx ∥δxPtmix(1−ε) − π∥TV

=
1 +

√
V ⋆(tmix(1− ε))

ε

Finally with 1 ≤ 1/ε we get the desired inequality.

In particular if the following entropic concentration condition is met then the sequence
exhibits a cuto� :

1 +
√

V ⋆(tmix(1− ε)) ≪ tmix(1− ε)

trell
This condition can be clari�ed under a positive curvature condition.
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2.2 Discrete Ricci curvature

Transportation distance The transportation distance of two measure is a way to
relate the topology of a Polish space (X, d) and the divergence of borelian measures.

De�nition 2.3 (L1 transportation distance). The L1 transportation distance (or 1Wasser-
stein distance) between µ and ν is the best average distance between µ and ν :

W1(µ, ν) = inf
ξ∈Π(µ,ν)

Eξ[d]

this can be see as the best way to transport the mass of µ towards ν.

W1 de�nes a distance on the set of measure with �nite �rst order. The proof is
detailed in the annex but isn't really relevant to the subject. Furthermore we have a dual
interpretation of this distance using 1 Lipschitz functions.

Theorem 4 (Kantorovich duality). When either side is non-in�nite :

W1(µ, ν) = sup
f∈ 1-Lip

∫
X

fdµ−
∫
X

fdν

This dual interpretation is much easier to manipulate and has very useful proprieties,
for instance the contraction of the Markov operator.

Ricci curvature We can now de�ne the Ricci curvature along xy. In a Riemannian
manifold the curvature measures the contraction of two parallel geodesics starting from
two points, in our case the chain will play the role of geodesics and the optimal coupling
will be an analogue of parallelism.

De�nition 2.4 (Coarse Ricci curvature). Let (X, d) be a Polish space and Pt a Markov
semi-group on X. Let x ̸= y ∈ X. The coarse Ricci curvature at time t, κt(x, y) of P
along xy is de�ned by :

W1(Pt(x, .),Pt(y, .)) = (1− κt(x, y))d(x, y)

The scalar Ricci curvature of m is κt = infx ̸=y κt(x, y). We denote W1,t(x, y) =
W1(Pt(x, .),Pt(x, .)) or W1(x, y) when there is no confusion possible. In our �nite case
the metric is almost exclusively the graph metric, i.e. the length of the shortest path.
We also have a dual interpretation of curvature.

Proposition 2.2. ∥Pt∥Lip = 1− κt. Where:

∥M∥Lip = sup
f 1-Lip

∥Mf∥Lip

Proof. If κt = 1 then Pt is a multiple of 1 and imPt is the subspace of constant functions.
So ∥Pt∥Lip = 1− κt = 0. Assume now κt < 1.
Let f be 1-Lipschitz then :

(Ptf)(x)− (Ptf)(y) =

∫
X

fdPt(x, .)−
∫
X

fdPt(y, .) ≤ W1(x, y) ≤ (1− κt)d(x, y)

So we have proven that ∥Pt∥Lip ≤ 1− κt.
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Let 1 − κt > ε > 0. Take x, y such that κt(x, y) ≤ κt + ε/2 then f 1-Lip such that∫
X
fdPt(x, .)−

∫
X
fPt(x, .) ≥ W1(x, y)− εd(x, y)/2. Then we have :

(Ptf)(x)− (Ptf)(y) ≥ (1− κt − ε)d(x, y) ≥ 0

so for any ε ∥Pt∥Lip ≥ 1− κt − ε concluding the proof.

Corollary 4.1. For any positive times t, s we have :

1− κt+s ≤ (1− κs)(1− κt)

Positive curvature condition By density of Q and by 1 − x ≤ e−x if κt0 is positive
then for all t ≥ t0 :

1− κt ≤ e−(κt0/t0)t

If κt is di�erentiable at 0 then let κ = lim
t→0+

κt/t and we have the bound:

1− κt ≤ e−κt

The positive curvature condition can be either ∀t ≥ 0 κt ≥ 0, or κ is positive, in that case
we say that the chain satis�es the κ-curvature condition.

Remark. Under stochastic normalizations L = P − Id, where P is a stochastic operator,
so by convexity :

∥Pt∥Lip ≤ et(∥P∥Lip−1)

in this case positive curvature can also refer to ∥P∥Lip ≤ 1.

2.3 Entropy concentration under positive curvature condition

As seen with Proposition (2.2) the positive curvature condition means that the chain is
a contraction in the sense of Lipschitz norm. Since cxy ̸= 0 if and only x y are adjacent,
i.e. at distance 1 in the graph metric, we can always bound :

Γ(Ptf,Ptf)(x) ≤
q(x)

2
∥f∥2Lip∥Pt∥2Lip

And with κ-curvature we have:

Γ(Ptf,Ptf)(x) ≤
q(x)

2
∥f∥2Lipe−2κt

Lemma 3 (Local concentration under positive curvature). For all x:

Pt(f
2)(x)− (Ptf)(x)

2 ≤ 1− e−2κt

2κ
q(x)∥f∥2Lip

the left factor is to be understood as t if κ = 0.

Proof. By di�erentiating both side it can be checked that :

Pt(f
2)(x)− (Ptf)(x)

2 = 2

∫ t

0

Pt−sΓ(Psf,Psf)(x)ds

Since P is a increasing operator then :

Pt−sΓ(Psf,Psf)(x) ≤
q(x)

2
∥f∥2Lipe−2κs

yielding the desired inequality.
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By convexity applying the Lemma to logPt(x, .)/π we have the bound:

V ⋆(t) ≤ 1− e−2κt

2κ
Eπ[q] max

x
∥ logPt(x, .)/π∥2Lip

This last Lipschitz norm can be controlled with elementary bounds on the generator. A
�rst Lemma will be useful, which proof is immediate by the telescoping.

Lemma 4. If (X, d) is a α-geodesic Polish space, that is for any x, y there exits a sequence
x1 = x, · · · , xn = y such that :

∀i ≤ n− 1, d(xi, xi+1) ≤ α,
n−1∑
i=1

d(xi, xi+1) = d(x, y)

then for all Lipschitz functions :

∥f∥Lip = inf
0<d(x,y)≤α

d′(f(x), f(y))

d(x, y)

Since graphs are 1-geodesic this means we can restrict �nding the minimum on adjacent
vertices. For simplicity we will now assume L to be auto-adjoint. Denote :

P = L+ diag(q)

Then:

Pt(x, y) = e−q(x)t

∞∑
k=0

tk

k!
P k(x, y)

Fix a base point o and let f(x) = Pt(o, x)/π(x). Since L is auto-adjoint we have the
equation π(x)P (x, y)f(y) = P (y, x)Pt(o, y) summing over y yields :

π(x)Pf(x) = e−q(o)t

∞∑
k=0

tk

k!

∑
y

P (x, y)P k(o, y)

= e−q(o)t1

t

∞∑
k=0

k
tk

k!
P k(o, x)

≤ e−q(o)t1

t

∞∑
k=0

k
tk

k!

(
max

x
q(x)

)k
By concavity :

Pf(x)

f(x)
≤ 1

t
log

e−q(o)t
∑∞

k=0 e
k tk

k!
(maxx q(x))

k

Pt(o, x)
= emax

x
q(x)− q(o) +

1

t
log

1

Pt(o, x)

Replacing L by diag(q)3/4 + L/4, then for k ≥ diam(G) then P k ≥ 1/4∆, so for t ≥
diam(G)/4 :

1

Pt(o, x)
≤ ∆diam(G)/max q(x)

where ∆ = supx q(x)/ infcxy ̸=0 cxy. So for t ≥ diam(G)/4 we have :

max
x∼y

f(y)

f(x)
≤ (e+ 1)∆ +∆ log∆
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Yielding for t ≥ diam(G)/4:

max
x

∥∥∥∥log Pt(x, .)

π

∥∥∥∥
Lip

≤ K log∆

where K is an universal constant, with Lemma 3 up to an universal constant :

V ⋆(t) ≤ KEπ[q]t log∆ (3)

Proving that tmix ≥ diam(G)/4 for any graph large enough will prove the following theo-
rem

Theorem 5. For any sequence of graphs with non-negative curvature:

tmix(ε)− tmix(1− ε) = O
(
Eπ[q] log∆trell

√
tmix(1− ε)

)
Under a stochastic normalization q = 1 so :

∆ =
1

infcxy>0 cxy

and in particular we have cuto� if :

tmix(1− ε) ≫ (trell log∆)2

for all ε > 1/2.

For simplicity in the rest of the report we will assume stochastic normalization (q = 1).

Lemma 5. For any graph under stochastic normalization :

diam(G) ≤ 2tmix(ε) + 2

√
2tmix(ε)

1− ε
+ 2

√
2trell
1− ε

Proof. Fix o a starting point and t = tmix(ε) and set :

A =

{
d(o, ·) ≤ t+

√
2t

1− ε

}

If Xt is the chain proceeding from o, then the distance at the origin is the number of
jumps and they occur at rate at most a Poisson variable of mean tmax q = t. So :

P(Xt ∈ A) ≥ 1− P

(
Z ≥ t+

√
2t

1− ε
;Z ∼ Pois(t)

)
> 1− 1− ε

2
=

1 + ε

2

by Tchebychev's inequality (since Var(Z) = t). Since t = tmix(ε) then ∥Xt − π∥TV ≤ ε in
particular :

π(A) >
1 + ε

2
− ε =

1− ε

2
(4)

Next, by de�nition of trell :
Varπ(f) ≤ trellE(f, f)
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where f = d(o, ·) and since f is 1-Lipschitz, E(f, f) ≤ 1. If U ∼ π denotes a variable
distributed according to π, then this last inequality can be rewritten as:

Var(f(U)) ≤ trell

Again by Tchebychev:

P

(
|f(U)− E[f(U)]| ≥

√
2trell
1− ε

)
≤ 1− ε

2

but by (4), f(U) ∈ A and |f(U)− E[f(U)]| ≤
√

2trell
1−ε

cannot be disjoint proving :

E[f(U)] ≤ tmix(ε) +

√
2tmix(ε)

1− ε
+

√
2trell
1− ε

This is true for all origin points o, so for any two points x, y, by the triangular inequality
:

2

(
tmix(ε) +

√
2tmix(ε)

1− ε
+

√
2trell
1− ε

)
≥ E[d(x, U) + d(y, U)] ≥ d(x, y)

Finally by a classic argument we have trell = O(tmix(ε)).
Let f be a eigenfunction of L for the value −λ = −1/trell, such that ∥f∥∞ = 1. Take x
such that |f(x)| is maximal, since the eigenvectors of a symmetric operator are orthogonal
Eπ[f ] = ⟨f,1⟩π = 0 :

|Ptf(x)| = e−λt|f(x)| = |(Pt(x, ·)− π)f | ≤ ∥f∥∞2∥Pt(x, ·)− π∥TV

Proving tmix(ε) ≥ −trell log(2ε). So under the weak assumption tmix(ε) → ∞ :

diam(G) ≤ 2tmix(ε) + o(tmix(ε))

proving that for large enough graphs tmix(ε) ≥ diam(G)/4. Note that if tmix(ε) = O(1)
then the theorem is trivially valid.

Re�nements The bound 1−e−2κt

2κ
≤ t can be replaced by a bound 1/2κ when κ is

positive, so under slow decrease of κ we have an other condition on tmix to prove cuto� :

tmix(ε) ≫
trell log∆√

κ

Corollary 5.1. A generic condition for cuto� on a sequence of graphs using only the
geometry of the chain is : √

log n

(log∆)3
≫ trell

where n = |G|.
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Proof. By the following lemma log n/ log∆ = O(tmix(ε)) so:

(trell log∆)2 ≪ log n

log∆

is enough for cuto�.

Lemma 6. For all ε ∈]0, 1[ we have :

tmix(ε) ≥ K(ε)
log[n(1− ε)/2)]

log∆

as soon as the right side is bigger then 1. Where

K(ε) =

(
1 +

√
2

1− ε

)−1

Proof. Let deg(x) by the degree of x. Under stochastic normalization, since
∑

y∼x cxy = 1,
we have :

min
y∼x

cxy ≥ 1/ deg(x)

So ∆ ≤ maxdeg(x). Let d = maxdeg(x), if 1 ≤ t ≤ K(ε) logn(1−ε)/2
log d

take:

A =

{
d(o, ·) ≤ t+

√
2t

1− ε

}
By Lemma 5 we have :

Pt(o, A) ≥
ε+ 1

2

We have
√

2t/(1− ε) ≤
√

2/(1− ε)t, and at most dy points are at distance ≤ y from o.
Therefore:

π(A) ≤ dK(ε)−1t/n ≤ exp (log(n(1− ε)/2)− log n) = (1− ε)/2

So :

∥Pt(o, ·)− π∥TV ≥ Pt(o, A)− π(A) ≥ ε+ 1− (1− ε)

2
= ε

Proving :

tmix(ε) ≥ K(ε)
log n(1− ε)/2

log d
≥ K(ε)

log n(1− ε)/2

log∆

The condition :

trell ≪

√
log n

(log∆)3

can be understood as a control of the expansion of the underlying graph. The isoperimetric
constant for graphs was introduced in [Moh89] as an analogue of the isoperimetric constant
for Riemanninan manifolds. It serves to quantify the expansion of a graph that is to say
the minimal proportions of edges of any set that are on the periphery of the set. Indeed
the classic Cheeger inequality relates the isoperimetric constant h(G) and the spectral
gap 1/trell (with no assumptions on the normalization) :
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Proposition 2.3 (Cheeger inequalities). For any connected chain on a graph G:

h(G)2

2maxx q(x)
≤ 1

trell
≤ 2h(G)

where :

h(G) = min
0<π(S)≤1/2

E∗(1S,−1Sc)

π(S)

Remark. If G is a symmetric unweighted graph then π is uniform and for y /∈ S:

L1S(y) =
∑
x∼y

1S(x) = |{x ∼ y;x ∈ S}|

So :
E∗(1S,1Sc) = −|{x ∼ y;x ∈ S, y /∈ S}|/n = −|∂S|/n

Yielding the more common de�nition of h :

h(G) = min
0<|S|≤n/2

|∂S|
|S|

furthermore q(x) = deg(x) yielding the classical Cheeger inequalities

Proof. Assume L is auto-adjoint, if not replace all mentions of L by L∗.

First Inequality Let g by a eigenfunction for the value λ. By developing :

E(g, g) = E(g, g)E(g,−g)
1
2

∑
x,y cxyπ(x)(g(x) + g(y))2

The quotient can be bounded with :

1

2

∑
x,y

cxyπ(x)(g(x) + g(y))2 = 2
∑
xy

cxyπ(x)g(x)
2 − E(g, g)

≤ 2max
x

q(x)Varπ(g)

(5)

Furthermore by C.S :

E(g, g)E(g,−g) ≥ 1

4

(∑
xy

π(x)cxy|g(x)2 − g(y)2|

)
(6)

Label the vertices 1, · · · , n such that g(i) is non-increasing. Then :∑
xy

π(x)cxy|g(x)2 − g(y)2| = 2
∑
i<j

π(i)cij(g(i)
2 − g(j)2)

= 2
n∑

k=0

∑
i≤k

∑
j>k

π(i)cij(g(k)
2 − g(k + 1)2)
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Because
∑

j>k≥i(g(k)
2 − g(k + 1)2) = g(i)2 − g(j)2. Let Sk = [[1, k]], we have :

Eπ[1Sk
L1Sc

k
] =

∑
i≤k

∑
j>k

π(i)cij = E(1Sk
,−1Sc

k
)

So by de�nition of h(G) :

2
n∑

k=0

∑
i≤k

∑
j>k

π(i)cij(g(k)
2 − g(k + 1)2) ≥ 2h(G)

n∑
k=0

π(Sk)(g(k)
2 − g(k + 1)2)

= 2h(G)Varπ(g)

where we used π(Sk+1) = π(k + 1) + π(Sk). Combining this with (5) and (6) we get :

1

trell
=

E(g, g)
Varπ(g)

≥ h(G)2

2maxx q(x)

Second Inequality Take S achieving the bound h(G) and let f = 1S/π(S)−1Sc/π(Sc).
We have Varπf = 1

π(S)
+ 1

π(Sc)
and:

E(f, f) = − 1

π(Sc)
Eπ[Lf1Sc ] +

1

π(S)
Eπ[Lf1S]

Since on x ∈ S :
Lf(x) = (1/π(S) + 1/π(Sc))L1Sc(x)

and on Sc we have the same relation with the inverse sign. Since 1/π(Sc) ≤ 1/π(S) :

E(f, f) ≤ 1

π(S)
(1/π(S) + 1/π(Sc))Eπ[L1S1Sc + L1Sc1S]

= Varf2
E(1S,−1Sc)

π(S)

= Varf2h(G)

thus λ ≤ E(f, f)/Var(f) ≤ 2h(G).

In conclusion this condition can also by viewed as a condition on good expansion of
the graph. To sum up, if the graphs has non-negative curvature and has good expansion,
i.e. :

h(G) ≫ 4

√
(log[maxx deg(x)])3

log n

Then the sequence exhibits a cuto�.

3 Application to random walks on abelian groups

Random walks on abelian groups are understood as random walks one of their associated
Cayley graphs. That is to say a abelian groupG and a set of generators S, in the associated
graph x is linked to x + s with s ∈ S, here we will assume the graph is undirected i.e.
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S−1 = S. Then under stochastic normalization the generator of the simple random walk
on this graph is :

Lf(x) =
1

d

∑
s∈S

f(x+ s)− f(x) = Pf(x)− f(x)

where d = |S|.

Proposition 3.1. Any simple random walk on a abelian Cayley graph has non-negative
curvature.

Proof. Let f be a 1-Lipschitz function and x, y be a distance 1 in the Cayley graph, i.e.
there is s ∈ S such that y = x+ s. Then :

Pf(y)− Pf(x) =
1

d

∑
s′∈S

f(x+ s+ s′)− f(x+ s′)

but since the graph is abelian x + s + s′ = x + s′ + s so d(x + s + s′, x + s) = 1 and
Pf(y)− Pf(x) ≤ 1. Proving ∥P∥Lip ≤ 1 so ∥Pt∥Lip ≤ 1, i.e. κt ≥ 0 for all t.

So what we proved yields that any sequence of abelian Cayley graph such that :

trell ≪

√
log n

(log d)3

exhibit a cuto�.
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Measure theory annex

Let Γ be the set of measurable sets such that A ∈ Γ iif:

∀B ⊂ A measurable , µ(B) ≥ ν(B)

This propriety is stable by reunion so Γmax = ∪A∈ΓA is the maximal measurable set with
this propriety

Proposition 3.2. Using these notations we have :

µ(Γmax)− ν(Γmax) = ∥µ− ν∥TV

Proof. Let A be such that µ(A)− ν(A) > ∥µ− ν∥TV − ε, if there exists B ⊂ A such that
ν(B)− µ(B) ≥ ε then :

µ(A)− ν(A) ≤ −ε+ µ(A−B)− ν(A−B) ≤ ∥µ− ν∥TV − ε

so for any measurable subset of A we have ν(B) < µ(B) + ε. Denoting Γε the set of sets
with this propriety, and Γε

max the maximal set. Then we have :

µ(Γε
max)− ν(Γε

max) = µ(A)− ν(A) + µ(Γε
max − A)− ν(Γε

max − A)

> ∥µ− ν∥TV − 2ε

because Γε
max − A ⊂ Γε

max. But the Γε
max are decreasing sets therefore :

µ
(
lim
ε→0

Γε
max

)
− ν

(
lim
ε→0

Γε
max

)
≥ ∥µ− ν∥TV

but we have exactly Γmax = lim
ε→0

Γε
max.

We can now generalize proposition 1.2 :

Corollary 5.2. If ν ≪ µ let h = ∂ν
∂µ

then :

∥µ− ν∥TV =
1

2
∥h− 1∥µ

Proof. If this case {x ∈ H|h(x) ≤ 1} also realizes the sup of the total variation distance.
Indeed let A ⊂ {x ∈ H|h(x) ≤ 1} (measurable), then we have :

ν(A) =

∫
A

h(x)dµ(x) ≤
∫
A

dµ(x) = µ(A)

therefore Γmax ⊃ {x ∈ H|h(x) ≤ 1} and :

µ(Γmax)− ν(Γmax) ≥ µ({x ∈ H|h(x) ≤ 1})− ν({x ∈ H|h(x) ≤ 1})

=

∫
Γmax

(1− h(x))1h(x)≤1dµ(x)

≥
∫
Γmax

(1− h(x))dµ(x)

= µ(Γmax)− ν(Γmax)
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Therefore we have :

∥µ− ν∥TV =

∫
H
(1− h(x))1h(x)≤1dµ(x)

but also :

∥µ− ν∥TV = ν({x ∈ H|h(x) > 1})− µ({x ∈ H|h(x) > 1}) =
∫
H
(h(x)− 1)1h(x)>1dµ(x)

Therefore : 2∥µ− ν∥TV =
∫
H |h(x)− 1|dµ(x).

We also have a expression of the distance in terms of coupling.

Proposition 3.3. For any two laws µ, ν we have :

∥µ− ν∥TV = inf
π∈Γ

X,Y∼π

P(X ̸= Y )

where Γ is the set of product laws that have projection coinciding with µ and ν.

Proof. Let A be a measurable set and (X, Y ) a coupling, then :

P(X ̸= Y ) ≥ P(X ∈ A, Y /∈ A) ≥ P(X ∈ A)− P(Y ∈ A) = µ(A)− ν(A)

therefore we have proved the �rst inequality.

We know the TV sup is met by Γmax here we prove that the coupling bound is also met.
If µ(Γmax) = ν(Γmax) then µ = ν and if µ(Γmax)−ν(Γmax) = 1 then µ and ν are of disjoint
support and the coupling bound is met by any coupling. In the general case we assume
x = µ(Γmax)− ν(Γmax) ∈]0, 1[. We can now de�ne 3 law, for any measurable set A:

γ0(A) = µ(A∩Γc
max)+ν(A∩Γmax))

1−x
=

µ(A∩Γmin)+ν(A∩Γc
min))

1−x

γ1(A) = µ(A∩Γmax)−ν(A∩Γmax)
x

γ2(A) = ν(A∩Γmin)−µ(A∩Γmin)
x

where Γmin is the maximal set such that all subsets verify µ(B) ≤ ν(B), by symmetry
Γmin also meets the sup of the TV , thus all these law are positives.

On Γmin ∩ Γmax we have ν = µ, but both γ1 and γ2 are zero, therefore the support of
γ1 is in Γmax − Γmin and γ2 is in Γmin − Γmax, in particular there are of disjoint support.
Take Xi ∼ γi and ξ ∼ B(x) (independent) then we have the following coupling:{

X = Y = X1 if ξ = 0
X = X1, Y = X2 else

we have a.s X1 ̸= X2 therefore we have exactly :

P(X ̸= Y ) = P(ξ ̸= 0) = x = ∥µ− ν∥TV

We now only need to prove that we have the correct projections. But since ξ is independent
of Y then :

E[X|Y ] ∼ γ0E[1− ξ] + γ1E[ξ] = µ

The same holds for Y proving the proposition.
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Proposition 3.4. W1 de�nes a distance on the set of measure with �nite �rst order.

Proof. Since d is symmetric clearly W1 is too. Then is µ, ν have �nite �rst order, that is
to say if we �x on point x ∈ X we have :

Eµ[d(x, .)] < ∞

by the triangular inequality this quantity is �nite iif it is �nite for any x ∈ X. Then take
ξ the product coupling we have :

Eξ[d] ≤ Eν [d(x, .) + Eµ[d(x, .)] = Eµ[d(x, .)] + Eν [d(x, .)] < ∞

If µ = ν we can take diagonal measure :

ξ(A×B) = µ(A ∩B)

For f(x, y) = 1A(x)1B(y) we have :

Eξ[f ] = µ(A ∩B) = Eµ[f(., .)]

so by linearity and density for any measurable function :

Eξ[f ] = Eµ[f(., .)]

but d(x, x) = 0 so Eξ[d] = 0 and W1(µ, µ) = 0.

If W1(µ, ν) = 0. If X, Y ∼ ξ we have :

P(d(X, Y ) ≥ ε) ≤ Eξ[d]

ε

Fix r > 0 let ξ be a coupling such that Eξ[d] ≤ εr. We have :

sup
x∈X

P(X ∈ B(x, r))− P(Y ∈ B(x, r)) ≤ P(∃x ∈ X, X ∈ B(x, r), Y /∈ B(x, r))

≤ P(d(X, Y ) ≥ r)

≤ ε

As P(X ∈ B(x, r))−P(Y ∈ B(x, r)) = µ(B(x, r))−ν(B(x, r)) is independent on couplings
we take ε → 0, thus for every open set O we have :

µ(O) = ν(O)

the σ-algebra is the borelian σ-algebra so µ = ν.

Let ξ1 be coupling of µ, ν and ξ2 a coupling of ν, π. Let V be the subspace of bounded
measurable function of X3 such that there exists ϕ1, ϕ2 measurable with :

f(x, y, z) = ϕ1(x, y) + ϕ2(y, z)

Let G : V → R be such that :

Gf = Eξ1 [ϕ1] + Eξ2 [ϕ2]
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If we take an other choice of ϕ′
1, ϕ

′
2 we have :

ϕ1(x, y)− ϕ′
1(x, y) = ϕ2(y, z)− ϕ′

2(y, z)

Then :

Eξ1 [ϕ1 − ϕ′
1] = Eξ1 [ϕ2(., z)− ϕ′

2(., z)]

= Eν [ϕ2(., z)− ϕ′
2(., z)]

= Eν [ϕ
′
1(x, .)− ϕ1(x, .)]

= Eξ2 [ϕ
′
2 − ϕ2]

thus G is well de�ned on V and positive and leaves constant functions invariant.

Let p(f) = inf{Gg; g ∈ V, f ≤ g} de�ned on the set of bound measurable functions.
This is well de�ned since constant functions are in V . p is sub-additive and positively
homogeneous, therefore Hahn-Banach theorem gives a extension of G to the space of
measurable function with the condition :

Gf ≤ p(f)

If f is positive then :
Gf ≥ −p(−f)

but we have 0 ∈ V and 0 ≥ −f then p(−f) ≤ 0 and Gf ≥ 0. Thus G is a positive form
on bounded measurable function of X3.

Now for B a measurable set of X3 let :

ξ(B) = G1B

this de�nes a measure on X3. If we take B = A×X with A ⊂ X2, then we have :

1B(x, y, z) = 1A(x, y)

so by de�nition of G :

ξ(A×X) = G1B = Eξ1 [1A] = ξ1(A)

the same can by said for sets of form X ×A. ξ is the "gluing" of ξ1 and ξ2. In conclusion
if X, Y, Z ∼ ξ then X, Y ∼ ξ1,Y, Z ∼ ξ2 and X,Z is a coupling of µ and π.

With the triangular inequality we have :

d(X,Z) ≤ d(X, Y ) + d(Y, Z)

so :
W1(µ, π) ≤ E[d(X,Z)] ≤ Eξ1 [d] + Eξ2 [d]

this is true for any coupling ξ1, ξ2 so we �nally have the triangular inequality :

W1(µ, π) ≤ W1(µ, ν) +W1(ν, µ)

Since X is Polish space Π(µ, ν) is in fact weak precompact but also closed, therefore
an optimal coupling does exist.
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Convex analysis annex

Using this optimal coupling in the W1 distance and convex analysis there is an dual
representation for W1 (see [Vil09] for a rigorous proof)

Theorem 6 (Kantorovich duality). When either side is non-in�nite :

W1(µ, ν) = sup
f∈ 1-Lip

∫
X

fdµ−
∫
X

fdν

Proof. I will give the basic idea of the proof. If ξ is any law on X2 if ξ is a coupling of µ
and ν then whenever it is de�ned we always have :

Eµ[f ] + Eν [g] = Eξ[f + g]

If ξ is not a coupling WLOG we can for example assume ξ(A × X) < µ(A) Take f =
1A, g = 0 then we have :

Eµ[f ] > Eξ[f ]

Taking fn = nf we have :

sup
f∈L1(µ),g∈L1(ν)

⟨f, g⟩ = Eµ[f ] + Eν [g]− Eξ[f + g] = ∞ ⇐⇒ ξ /∈ Π(µ, ν)

if not this sup is 0, so we can rewrite W1 as :

W1(µ, ν) = inf
ξ∈P (X2)

Eξ[d] + sup
f∈L1(µ),g∈L1(ν)

⟨f, g⟩

= inf
ξ∈P (X2)

sup
f∈L1(µ),g∈L1(ν)

Eξ[d] + ⟨f, g⟩

P (X2) with d ∈ L1 and L1(µ) × L1(ν) are both convex set and the function ξ, f, g →
Eξ[d]+⟨f, g⟩ strati�es conditions of quasi-convexity and semi-continuity of Sion's minimax
theorem such that we can exchange both quantities :

W1(µ, ν) = sup
f∈L1(µ),g∈L1(ν)

inf
ξ∈P (X2)

Eξ[d− (f + g)] + Eµ[f ] + Eν [g]

If d − (f + g) is positive then the infξ Eξ[d − (f + g)] ≥ 0 take ξ = µ ⊗ µ we have ξ p.s.
d− (f + g) = 0 thus is d− (f + g) is positive :

inf
ξ∈P (X2)

Eξ[d− (f + g)] = 0

If not there exists µ, ν-a.s. the exists x, y such that d(x, y)−(f(x)+g(y)) < 0. Let h = (f+
g − d)+ ∈ L1(µ)⊗ L1(ν) take ξn with marginal dξn(x, y) = hn(x, y)dµ(x)dν(x)/Eµ⊗ν [h

n].
Then we have :

Eξn [d− (f + g)] = −Eµ⊗ν [h
n+1]

Eµ⊗ν [hn]

this divergence to −∞ if h ≥ 1 with non 0 probability if not replace n by −n and get the
same result. In conclusion:

inf
ξ∈P (X2)

Eξ[d− (f + g)] = −∞ ⇐⇒ d ≤ f + g
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if not this inf is 0, so we can rewrite :

W1(µ, ν) = sup
f∈L1(µ),g∈L1(ν)

f+g≤d

Eµ[f ] + Eν [g]

If f + g ≤ d then :
g(x) ≤ inf

y
{d(x, y)− f(y)}

We can de�ne g = infy{d(x, y)− f(y)} = fd(x) that maximizes the sup. If f is not 1 Lip
then :

sup
y

f(y)− d(x, y) > f(x)

then f < −g, thus not maximizing W1, the sup appends exactly when f(x) = −g(x), that
is to say when f is 1 Lip, proving the theorem.
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